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ABSTRACT

This work discusses the land surface–atmosphere interactions during the severe drought of 2008 in southern

SouthAmerica, which was among themost severe in the last 50 years in terms of both intensity and extent. Once

precipitation returned to normal values, it took about two months for the soil moisture content and veg-

etation to recover. The land surface effects were examined by contrasting long-term simulations using

a consistent set of satellite-derived annually varying land surface biophysical properties against simulations

using the conventional land-cover types in the Weather Research and Forecasting Model–Noah land

surface model (WRF–Noah). The new land-cover dataset is based on ecosystem functional properties that

capture changes in vegetation status due to climate anomalies and land-use changes.

The results show that the use of realistic information of vegetation states enhances the model performance,

reducing the precipitation biases over the drought region and over areas of excessive precipitation. The

precipitation bias reductions are attributed to the corresponding changes in greenness fraction, leaf area

index, stomatal resistance, and surface roughness. The temperature simulation shows a generalized increase,

which is attributable to a lower vegetation greenness and a doubling of the stomatal resistance that reduces

the evapotranspiration rate. The increase of temperature has a beneficial effect toward the eastern part of

the domain with a notable reduction of the bias, but not over the central region where the bias is increased.

The overall results suggest that an improved representation of the surface processes may contribute to im-

proving the predictive skill of the model system.

1. Introduction

Land surface processes are recognized as a potential

source of climate variability and predictability at dif-

ferent time scales, from hours to seasons and longer

(Koster et al. 2000; Koster and Suarez 2003; Guo et al.

2011; Sellers et al. 1992; Foley et al. 2000). Changes in

the land surface or vegetation cover can affect the way

the land and the atmosphere interact at many of those

time scales and can thus have an effect on climate.

Changes in the surface states result from land-use and

land-cover changes, either from natural or anthropo-

genic origin or from climate conditions that affect the

vegetation health and its phenology. Abundant evi-

dence based on model simulations has been offered

on the impacts of land-cover changes on regional

to global climate and will not be reviewed here
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(see, e.g., Pielke et al. 2007, and references therein;

Mahmood et al. 2010).

The need for a correct representation of the land

surface in models has been discussed for many years

(Betts et al. 1996; Ge et al. 2007), and several efforts have

been reported with positive results in general. In themost

elaborate approach, climate models are being coupled to

highly complex dynamical vegetation models with ex-

plicit representation of physiological and biogeochemical

processes (e.g., Smith et al. 2001; Levis et al. 2004). In

most cases, the issue is handled by more empirical ap-

proaches. Kurkowski et al. (2003) and Jiang et al. (2010)

have found that the use of near-real-time fractional veg-

etation coverage derived from satellite data in weather

model simulations tends to reduce both the near-surface

temperature and dewpoint biases. Likewise, the use of

realistic leaf area index (LAI) translates into increases of

potential predictability of evaporation in tropical and

forested areas, although the impact on potential pre-

dictability of near-surface temperature is smaller and in

some places even negative (Weiss et al. 2012). Tian et al.

(2004a,b) indicated that a better representation of

vegetation leads to a more realistic surface albedo, of

which impacts on climate are well documented. Their

results also show that new estimates of LAI, plant

functional types, and fractional vegetation cover from

the Moderate Resolution Imaging Spectroradiometer

(MODIS) continuous vegetation improve the absorp-

tion and partitioning of energy between canopy and

soil, reducing the model biases.

Numerical experiments using new land surface pa-

rameters based on MODIS data show that, for example,

the Community Climate System Model (CCSM) is

sensitive to the changes in land surface; however, while

there are improvements in the simulation of pre-

cipitation and near-surface temperature, large biases

still remain (Lawrence and Chase 2007). These mixed

results are not uncommon in studies of vegetation–

atmosphere feedbacks and are a demonstration of the

complexity of representing realistically the land surface

in climate models. Despite the overall evidence indi-

cating that a more realistic representation of surface

conditions reduces model biases, many current numer-

ical models, particularly those used for operational fore-

casts, still employ fixed land-cover types. Hence, they are

unable to represent the additional sources of interannual

variability owing to land-cover changes, as a result of ei-

ther land-use changes or the vegetation’s degree of stress

(e.g., during droughts, wet periods, or insect outbreaks).

In other words, models that do not include changes in

land cover may have a limited representation of the

land surface–atmosphere feedbacks and consequently

on their effects on the regional climate.

South America is a region where climate models tend

to have difficulties to properly reproduce the patterns

and magnitude of precipitation (e.g., Silvestri and Vera

2008; Solman et al. 2008; Rusticucci et al. 2010). The

reasons are not fully understood, but contributing fac-

tors are assumed to be the misrepresentation of the ac-

tual land-cover types and the consequent inadequate

simulation of the land–atmosphere interactions. Vast

areas are suffering from human-induced changes in

land cover, with deforestation and land clearing for

agriculture and cattle ranching being the most impor-

tant ones (Dros 2004; Paruelo et al. 2005).

This study explores the use of a consistent set of annually

varying biophysical properties of vegetation derived from

satellite data as a replacement of the conventional land-

cover types for southern South America in the Weather

Research and Forecasting (WRF) Model coupled with

the Noah land surfacemodel (LSM). The new set, named

ecosystem functional types (EFTs), takes into account

the functional properties of terrestrial ecosystems, as

identified using a top-down approach of MODIS mea-

surements of vegetation greenness. This article reports

how the newly defined land representation impacts the

land–atmosphere interactions and model performance

during an intense drought episode that occurred in

2008 in southern South America. The characteristics of

the severe drought event are discussed in section 2.

Section 3 presents the model configuration and an eval-

uation of the control simulations. Section 4 introduces the

new time-varying but consistent land surface dataset

and discusses its biophysical properties and the differ-

ences with the traditional land-cover representation.

The results of the simulations with the novel dataset, its

comparison to the control simulations, and possible

mechanisms for the changes are discussed in section 5.

A summary discussion is presented in section 6, while

the conclusions are offered in section 7.

2. The observed 2008 drought in southern
South America

The hypothesis of this research is that a realistic repre-

sentation of the land-cover properties helps improve the

simulation of the land surface–atmosphere interactions

and hence can reduce model biases inherent to surface

processes. Consequently, it is expected that the effects will

be more noticeable during a situation when the surface

states depart noticeably from their predefined properties,

as during a drought period. For this reason we test our

hypothesis for a drought event that took place in southern

SouthAmerica, a regionwhere climate has great economic

and social impacts.Other regionswithin themodel domain

had excess of precipitation, giving the opportunity to

1 SEPTEMBER 2014 MÜLLER ET AL . 6755



examine the land–atmosphere interactions and surface

effects during very different conditions.

a. Large-scale patterns associated with extremes
in southern South America

Southeastern South America has experienced a posi-

tive trend in annual precipitation during the second half

of the twentieth century (e.g., Krepper and Zucarelli

2009; Doyle et al. 2012). Since Argentina and Uruguay

are countries whose economy relies mostly on rain-fed

agriculture, the trend has favored the expansion of the

agricultural frontier, increasing the availability of pro-

ductive lands. However, this increase has been accom-

panied by greater interannual variability in precipitation,

which increases the risk not only of flood events but also

of droughts with their consequent negative impacts

(Penalba et al. 2010).

Extreme events in southern South America recognize

as the main driver the Pacific Ocean SST anomalies, es-

pecially owing to the ENSO phenomenon (Ropelewski

and Halpert 1987; Aceituno 1988; Mechoso and Perez-

Iribarren 1992). Positive SST anomalies over the tropical

Pacific (El Niño) are known to induce wet spells over
southern South America; conversely, a cold tropical Pa-
cific (La Niña) favors dry conditions. The effect of the
Pacific Ocean anomalies is enhanced by the north trop-
ical Atlantic when they are in opposite phases. For ex-
ample, a cold Pacific (La Niña) complemented with
a warm north tropical Atlantic induces a distinct drought
pattern with a noticeable increase in anomaly strength
(Seager et al. 2010; Mo and Berbery 2011).

Muchof thework on land-cover changes carried out for

South America is focused on the tropical and subtropical

regions, but little is found on land surface effects for south-

ern South America. Nevertheless, Lee and Berbery (2012)

showed that the regional climate over the La Plata basin

is sensitive to idealized changes in land cover. Entekhabi

et al. (1992) argued that land surface memory due to soil

moisture storage could result in enhancing and prolonging

both floods and droughts. Along this reasoning, Hong and

Kalnay (2002) showed that, while the 1998 Oklahoma–

Texas drought did not originate from surface effects, once

it was established, the dry soil anomalies helped to main-

tain the pattern for several months before the mechanism

was overwhelmed by synoptic-scale disturbances in the

autumn. Land-cover changes have also been found to af-

fect the character of climate extremes: in easternAustralia,

land-cover changes led to an increased number of dry days

and a decrease in daily rainfall (Deo et al. 2009).

b. Observations

Two observational precipitation datasets are used to

describe the characteristics of the 2008 drought and to

evaluate the model performance. They are the National

Centers for Environmental Prediction (NCEP) Climate

Prediction Center (CPC) global land-only gridded daily

precipitation analysis at a 18 3 18 grid spacing derived

from gauge-only observations (Shi et al. 2000; Silva et al.

2007) and the Tropical Rainfall Measurement Mission

(TRMM) 3B43 monthly satellite data at 0.258 3 0.258
grid spacing (Huffman et al. 2007).Wewill refer to these

two precipitation products as observed and satellite

derived, respectively.

Additional variables are employed to assess the land

surface conditions during the drought: CPC has created

a land-only monthly global surface air temperature

dataset based on observations interpolated to a 0.58 3
0.58 grid (Fan and Van den Dool 2008). Also, observed

temperature data were collected from 184 gauge stations.

CPC is also producing a global soil moisture dataset at

0.58 3 0.58 grid spacing that is computed with a simple

water balancemodel using precipitation and temperature

over land as input (Fan and Van den Dool 2004). The

CPC soil moisture is used here as an additional indicator

of the observed drought, but not for model evaluation as

values are highly dependent on model characteristics,

preventing a direct comparison between models.

Finally, the normalized difference vegetation index

(NDVI) was used to identify ecosystem functional types

to capture the seasonal and interannual variability of

vegetation primary production. The NDVI dataset was

derived from the MODIS vegetation product MOD13C2

for 2001–09. This dataset consists of 16-day maximum

value composite global images at a spatial resolution of

0.058 3 0.058.

c. Observed features of the 2008 drought

The large-scale ocean patterns during the severe

drought of 2008 affecting southern South America were

consistent with themodes described in section 2a: that is,

the combination of a La Niña episode with large tropical
North Atlantic warm SST anomalies (not shown). The
drought had exceptional characteristics in terms of
spatial extension and persistence, causing great eco-
nomic losses. Bidegain (2009) reported that the spatial

extent of the 2008 drought was comparable to or larger

than other important droughts in the region that oc-

curred during the last five decades. In several locations,

the drought duration was the longest on record,

achieving very low values of the standardized pre-

cipitation index (SPI), which in some cases became the

series absolute minimum (M. Skansi 2009, personal

communication).

The spatial distribution of the drought as represented

by the precipitation anomalies is shown in Figs. 1a,b.

The satellite-derived precipitation anomaly pattern
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FIG. 1. Year 2008 (a) TRMM precipitation anomalies compared to the average for 1998–2007; (b) observed precipitation anomalies

compared to the average for 1979–2007; (c) mean SPI3; (d) CPC soil moisture anomalies compared to the average for 1948–2007;

(e) NDVI compared to the average for 1982–2007; and (f) countries and oceans included in the region of interest. The red boxes highlight

the main drought area.
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(Fig. 1a) shows a negative center over Uruguay, ex-

tending over northeastern Argentina and southern

Paraguay with a maximum deficit of 2mmday21 over

Uruguay (around 40% of the 1998–2007 mean). The

observed rainfall anomalies (Fig. 1b) have a similar

pattern, but with a second center over the northeastern

tip of Argentina near the border with Brazil and Para-

guay (usually known as the tripartite border). The

magnitude of the observed anomalies is smaller than

those from satellite-derived information, which may be

due to the sparsely distributed rain gauges that tend

to smooth the rainfall pattern. Figure 1c depicts the

3-month standard precipitation index (SPI3) averaged

for 2008. The SPI values (seeMo 2008) identify themain

drought area as moderately to severely dry (22.0 ,
SPI3 , 21.0). The index also shows the second core,

defining it as mildly to moderately dry (21.5 , SPI3 ,
0.0). The rainfall-deficit conditions have an evident ef-

fect on the soil moisture availability in northeastern

Argentina and most of Uruguay (Fig. 1d). As a conse-

quence of the depletion of rainfall and the reduced soil

moisture content, the NDVI anomaly pattern (Fig. 1e)

exhibits negative values corresponding to lower vege-

tation greenness.

Figure 2 presents the evolution of the drought as

characterized by an area average over the box 388–288S,
638–558W. Figures 2a,b indicate that the region first

had a rainfall deficit during the austral winter 2007 that

recovered during austral spring, only to return to an

almost continuous deficit from November 2007 to June

2009. The time series of SPI3 in Fig. 2c repeats the pre-

cipitation evolution, showing four local minima classifi-

able as moderately dry (SPI3 ’ 21.5). The minimum in

August 2007 derives from the first rainfall deficit, and

the remaining minima appear lagging one month with

respect to the minimum peaks of rainfall, as a conse-

quence of the computationmethod for SPI3 (Mo 2008).

The near-surface temperature in Fig. 2d shows a slight

warming of about 0.58C on average from the mean

annual cycle during the longest period of the drought.

The soil moisture also follows the rainfall evolution

(Fig. 2e), with negative anomalies starting in December

2007 and increasing continuously in magnitude until

reaching the largest deficit during the first half of 2009.

With the rain returning to normal around July–August

2009, the soil moisture content begins to recover start-

ing in September (austral spring) and returns to clima-

tological values by the end of 2009. The water deficit

had a direct effect on NDVI that presents a long period of

low vegetation greenness (Fig. 2f) starting about 3 months

after the first negative anomalies of precipitation. The

time series show that the long-term anomalous precipi-

tation strongly affected vegetation and soil conditions,

which need about 2 months of normal to high pre-

cipitation to recover back to their typical mean values.

3. Model configuration and evaluation

a. Model configuration

Numerical simulations of the 2008 drought were car-

ried out with the Advanced Research WRF (ARW),

version 3.2, released on 2 April 2010. A full technical de-

scription of the system is given in Skamarock et al.

(2008). WRF solves the fully compressible nonhydro-

static Eulerian equations in flux form, using a terrain-

following hydrostatic pressure vertical coordinate. It is

coupled with the Noah LSM version 3.2 that solves the

surface energy andwater balances to provide sensible and

latent heat fluxes to the boundary layer (see Chen et al.

1996; Chen and Dudhia 2001; Ek et al. 2003). The Noah

LSMhas four soil layers with a corresponding thickness

from the top down of 10, 30, 60, and 100 cm (2-m total

depth) and includes representations of the root zone,

vegetation categories, monthly vegetation fraction, and

soil texture. Output variables from the Noah model

include evapotranspiration, runoff, soil drainage, soil

temperature, and soil moisture content.

The Noah LSM employs a fixed land-use/land-cover

map (Anderson et al. 1976), generated by the U.S. Geo-

logical Survey (USGS) Center for Earth Resources

Observation and Science, the University of Nebraska–

Lincoln, and the Joint Research Centre of the European

Commission. The map was derived from the National

Oceanic and Atmospheric Administration (NOAA)

Advanced Very High Resolution Radiometer (AVHRR)

images collected daily over a 12-month period from

April 1992 through March 1993 with 1-km resolution

(Eidenshink and Faudeen 1994). In the case of southern

South America, the 1992/93 period was characterized by

normal rainfall in most of the domain (not shown), with

positive anomalies up to 1.8mmday21 in northern Bolivia

and up to 1mmday21 in areas of southern Brazil (around

248S, 528W).

The WRF–Noah was run with a horizontal grid

spacing of 18 km and 28 vertical levels over a domain

that covers the southern part of South America (see

Fig. 3). It includes the area of the La Plata basin (in red),

with significant topographic features like the Andes

cordillera toward the west and the Brazilian highlands

toward the northeast. Lowlands and plains complete

the domain. The model physics configuration follows

the selection of schemes and options of Lee and Berbery

(2012, see their Table 1) and Lee (2010), who evaluated

the combination of parameters that represent the South

America climate with smaller biases finding that the
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Betts–Miller–Janji�c (BMJ) convection scheme out-

performed the other choices in the region. As in other

convective schemes, the decision to activate or not ac-

tivate deep convection in BMJ is not based entirely upon

cloud layer moisture. The reference profiles for the BMJ

scheme are calculated by lifting parcels from the bound-

ary layer, so their time dependence responds directly to

the land surface forcing and the time dependent response

of the mixed layer. For these reasons, alterations to

conditions within the planetary boundary layer have an

effect on the simulations (K. Betts and Z. Janji�c 2013,

personal communication). The use of the BMJ scheme is

not uncommon in studies of land surface–atmosphere

interactions (see, e.g., Xue et al. 2001; Zeng et al. 2012).

FIG. 2. Land-only area-averaged time series for the drought region (388–288S, 638–558W) of

(a) TRMM precipitation anomalies, (b) observed precipitation anomalies, (c) 3-month SPI,

(d) temperature anomalies, (e) soil moisture anomalies, and (f) NDVI anomalies. All anom-

alies are done with respect to the corresponding mean annual cycle.
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The model was forced by the initial and 6-h lateral

boundary conditions from the NCEP–National Center

for Atmospheric Research (NCAR) Global Reanalysis

1 project (Kalnay et al. 1996). Sea surface temperatures

were obtained from the Reynolds dataset, also included

in the global reanalysis. Soil moisture initial states are an

important source of error in the simulations. First, the

NCEP–NCAR reanalysis model has a land surface

model that is different from the one used inWRF–Noah.

Soil moisture estimates are model dependent, and thus

the range of values between wilting point and the field

capacity can be very different. Second, the reanalysis

land surface model has two layers while Noah uses four

layers; hence, an interpolation is needed (the in-

terpolation scheme is part of the WRF package). In

long-term simulations like the ones performed in this

study, the spinup time should be enough to achieve an

equilibrium that minimizes these errors.

b. Model evaluation

Control simulations (CTL) were carried out using

the USGS land-cover map and its corresponding bio-

physical properties. Experiments using the International

Geosphere–Biosphere Programme (IGBP) land-cover

categories obtained fromMODIS data were also carried

out, but they are not shown as the model performance

was similar to that using the USGS definitions. An en-

semble of five members was created using identical

parameterizations with the only difference being the

initial conditions that are 24-h apart following the

lagged average forecasting method (Hoffman and

Kalnay 1983). The period of simulation extends from

29 August–2 September 2007 (5 successive initial days)

to 31 July 2009 to cover the whole period of precipitation

deficit, as shown in Figs. 2a,b. We will call this period the

drought period.

The performance of the model was evaluated in terms

of precipitation and air temperature at 2m. The simu-

lation of precipitation is fundamental in the water bal-

ance and for the representation of drought events.

Models must correctly represent a number of processes

(e.g., evapotranspiration, condensation, moisture flux

convergence) to simulate the patterns of precipitation.

The spatial distribution of the CTL ensemble precipi-

tation (Fig. 4b) follows the satellite-derived precipi-

tation pattern (Fig. 4a), with high values toward the

northeast of the domain decreasing toward the south-

west. The control ensemble represents the observed

precipitation center over northern Bolivia but extends

over a larger area extending toward the south over or

near the Andes cordillera. Despite the similar pre-

cipitation patterns, quantitative differences are found

(Fig. 4c). In the southeastern part of the domain, where

the drought took place, themodel has a dry bias of about

1–2mmday21, that is, exaggerating the drought sever-

ity. Finally, the model simulations exhibit a wet bias

toward the northern part of the drought region (north-

east Argentina/east Paraguay), thus failing to represent

the local drought features. Positive biases are found in

an approximate longitudinal band along 258–188S, with
values of up to 8mmday21 near the Andes cordillera

and the Brazilian highlands and up to 5mmday21 in

Paraguay. The model 2-m temperature was assessed

against the gridded dataset of observations.

Figure 5 presents the average temperature during

the drought as estimated from the CPC observations,

the CTL ensemble, and their differences. The pattern

is not shown over the Andes cordillera because the

combination of sparse observations and steep slopes

prevents a reliable assessment of the model’s surface

temperature simulations. Away from the Andes, the

model simulations capture the main features of the

observed temperature in terms of magnitude and dis-

tribution. The simulations also reproduce the observed

temperature gradient with maximum values over the

central-northern domain decreasing toward the south.

The bias pattern shows somewhat warmer tempera-

tures over the middle of the continent and cooler tem-

peratures on a band along eastern coast. Away from the

mountains, anomalies range between 0.58 and 28C in

magnitude.

FIG. 3. Model domain and topography. The red line represents the

boundary of the La Plata basin.
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FIG. 4. Mean precipitation during the drought period estimated

from (a) TRMM and (b) CTL ensemble and (c) CTL ensemble

precipitation biases. Ocean areas were masked out.

FIG. 5. Mean temperature at 2m during the drought period es-

timated from (a) observations and (b) CTL ensemble and (c) CTL

ensemble temperature biases. Areas above 800hPa and ocean areas

were masked out.
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4. Land-cover properties

The exchanges of energy, water, and momentum be-

tween the land surface and the atmosphere depend on

the land surface biophysical properties. Consequently,

changes in land cover will also affect those exchanges

with expected impacts on the climate conditions. This is

particularly relevant for southern SouthAmerica, where

the replacement of native vegetation (e.g., by croplands)

has extensively occurred in recent years (Volante et al.

2012).

The USGS classification used in the Noah LSM pre-

scribes 24 constant land-cover categories, and each is

assigned 15 biophysical properties like rooting depth,

minimum and maximum albedo, and surface roughness

(Chen and Dudhia 2001). This approach has several

limitations since the properties assigned to a given land-

cover category are invariant in space and time or are

bound by fixed minimum and maximum values: that is,

each land cover is assumed to have the same constant

properties during a drought or a wet spell and at any

location.

a. Ecosystem functional types

To overcome the shortcomings noted above, Lee et al.

(2013a,b) explored the sensitivity of climate variables to

the use of time-varying ecosystem properties as a re-

placement of the invariant land-cover types, with

promising results for 3-month WRF simulations. Func-

tional attributes of ecosystems, those characterizing the

energy and matter exchange between the biota and the

atmosphere (Valentini et al. 1999), show a quicker re-

sponse to environmental changes than structural ones

(McNaughton et al. 1989) and are relatively easy to

monitor using satellite-derived spectral indices (Paruelo

et al. 2001). Based on these concepts, Alcaraz-Segura

et al. (2006, 2013b) developed a method to define eco-

system functional types on a yearly basis. Formally,

ecosystem functional types are defined as groups of

ecosystems that share functional characteristics in re-

lation to the amount and timing of the exchanges of

matter and energy between the biota and the physical

environment (Paruelo et al. 2001; Alcaraz-Segura et al.

2006). Since EFTs are defined from descriptors of the

NDVI dynamics on an annual basis, the year-to-year

variability of the surface conditions can thus be iden-

tified (Alcaraz-Segura et al. 2013a). Therefore, inter-

mediate and long-term ecological phenomena and land

surface processes are better represented: that is, EFTs

reflect vegetation changes resulting from either land-use

or natural changes.

EFTs are computed using three metrics of the NDVI

seasonal dynamics: (i) the annual mean of NDVI as an

estimator of net primary production; (ii) the seasonal

coefficient of variation of NDVI as a descriptor of sea-

sonality (the difference between the growing and non-

growing season or amplitude of the annual cycle); and

(iii) the date of the absolute maximum normalized dif-

ference vegetation index in the given year as a pheno-

logical indicator of the growing season. For practical

reasons (see Alcaraz-Segura et al. 2006, 2013b) the

range of values of each NDVI descriptor was divided

into four fixed intervals, giving a potential number of

43 5 64 categories. To divide the range of values of the

NDVI annual mean into four categories, its three

quartiles were obtained for each year and then, for each

quartile, the median across years was calculated. The

same applies to the seasonal coefficient of variation.

Finally, the four categories for the date of maximum

NDVI correspond to the four seasons of the year in

temperate ecosystems.

The EFTs categories are identified with codes of

three characters, one for each descriptor, following the

convention suggested by Paruelo et al. (2001). The

definition and coding of EFTs allow for an ecological

interpretation of the legend in terms of the three NDVI

metrics: The first character identifies the net primary

productivity from low to high with an uppercase letter

from A to D (increasing productivity). The second

character represents high to low seasonality (amplitude

of the annual cycle), identified by a lowercase letter from

a to d (decreasing seasonality). The last character cor-

responds to the season of the maximum NDVI, where

spring is associated with 1 and sequential numbers are

for the following seasons. For instance, subtropical rain

forests have high productivity, low seasonality, and

spring maxima, which correspond to an EFT identified

as Dd1. Soybean plantations in the dry Chaco forest

have relatively low productivity, very high seasonality,

and summer maxima, which correspond to an EFT

identified as Ba2. Dry Puna and Patagonia Desert, on

the other hand, have very low productivity, very low

seasonality, and autumn maxima, which correspond to

an EFT defined as Ad3. Humid Pampas have relatively

high productivity, very low to low seasonality, and sum-

mer maxima, which correspond to EFT categories Ca2

and Cb2.

Figure 6a presents the 2001–09 median EFT field that

is a characterization of ecosystem functioning. Warm

colors represent ecosystems with large net primary

production, low seasonality, and warm season maxima

(e.g., the subtropical forests, Dd1). Cold colors repre-

sent the opposite behavior, as in the dry Puna (Ad3).

See the legend in Fig. 6a for the definition of all eco-

system functional types/colors. Figure 6b shows the

2008 EFTs map. In most of the domain, both maps
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(Figs. 6a,b) have similar categories. However, remark-

able differences are evident for areas that experienced

either strong land-use changes or climate-related veg-

etation stress. Particularly, the map of 2008 EFTs

shows large changes in the main drought area (white

rectangle): EFTs that have average productivity

(green and light blue categories) in Fig. 6a are re-

placed by EFTs with low and very low productivity

(light and dark blue) during 2008, indicating a re-

duction in photosynthetic activity. Such interannual

changes agree with the observed dynamics in NDVI

depicted in Fig. 2e.

b. A consistent set of time-varying EFT
biophysical properties

The Noah LSM defines a table of 15 biophysical

properties of each land-cover category of the USGS

classification. It also includes a table for use with the

IGBP classification. Following the method described

in the appendix, an analogous table of properties is

obtained for the EFTs categories. The method was

applied using the properties of Noah LSM for the

IGBP classification over the MODIS land-cover classes

(MCD12C1 product, collection 5) (Friedl et al. 2002,

2010). Further details and discussion are provided in the

appendix.

Figures 7 and 8 present the biophysical property

changes when the USGS land-cover map is replaced by

the EFTs map of 2008. Eight out of the 15 parameters

are shown because of their larger dependence on the

land surface changes as described by the time-varying

EFTs (Alcaraz-Segura et al. 2011, 2013b). Figure 7 pres-

ents the properties related to vegetation, like greenness

fraction, leaf area index, surface roughness, and sto-

matal resistance, while Fig. 8 shows properties related

to the radiation terms, like albedo and emissivity.

Biophysical properties associated with the 2008 EFTs

depict the drought region with decreased greenness

and leaf area index, and larger stomatal resistance

(Fig. 7) as well as an increase in minimum albedo and

a reduction of emissivity (Fig. 8). (Note in Fig. 7e that,

unlike the rest of the panels, colors were reversed to

reflect that, for all properties, green colors represent

greener vegetation and brown colors represent drier

conditions.) Focusing on the secondary core of the

drought (near the tripartite border), EFTs reduce

greenness fraction, leaf area index, and surface rough-

ness. This region has higher values of minimum and

maximum albedo. While the use of EFTs improves the

description of land-cover states in most of the domain,

there are exceptions. The Atacama Desert in northern

Chile appears greener because the methodology tends

to smooth such extreme states.

FIG. 6. (a) 2001–09 EFTs median map and (b) EFTs map for 2008.

EFTs categories are indicated by the legend at bottom.
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FIG. 7. Vegetation property differences betweenEFTs of 2008 and

the USGS classification: (a) green vegetation fraction, (b) minimum

leaf area index through the year, (c) minimum and (d) maximum

background roughness length through the year, and (e) stomatal

resistance.
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c. Discussion of the different approaches

As noted earlier, one of the limitations of the con-

ventional USGS or IGBP land-cover types is that they

are constant in time. The use of MODIS land-cover

categories updated on a yearly basis is an improvement

in this respect. Yet, Friedl et al. (2010) report that the

MODIS land-cover dataset has an overall accuracy of

about 75% but ‘‘the range in class specific accuracies is

large.’’ The errorsmay be larger in regions with scarce or

no in situ information (e.g., southern South America)

than over other regions like theUnited States or Europe

where observations can be used to better define pa-

rameters. MODIS also estimates some biophysical

properties like green vegetation fraction, leaf area in-

dex, and albedo that have begun to be introduced in land

surface and climatemodeling to depict more realistically

some land surface processes (Miller et al. 2006; Weiss

et al. 2012). However, there are other parameters like

rooting depth or surface roughness length (Z0) that

should change consistently with the modified properties

but for which there are no satellite estimates. Addition-

ally, the MODIS leaf area index is derived from other

MODIS products including the MODIS land cover,

which, as noted by Friedl et al. (2010), may be subject to

uncertainties. In this work, greenness vegetation fraction,

leaf area index, and albedo are derived from EFT values

along with all the other biophysical parameters to main-

tain the consistency among them and avoid mixing ap-

proaches. In this way, the dataset has changes in all

properties corresponding to a unique physical indicator

(the EFT values). In any event, the purpose of this study

is not to compare against MODIS estimates but rather to

show possible improvements over a current version of the

WRF–Noah that is of common use.

Note that with the conventional approach it is also

possible to increase the number of land-cover types to

better represent shifts in crop types (see Beltrán-
Przekurat et al. 2012), something that has occurred

intensively in the region of interest (changes within the

cropland category have involved soy bean, alfalfa, and

wheat, among other crop types). Nevertheless, assign-

ing physical properties to each subcategory may be

hard to achieve. In our case, the EFT properties are

derived from the smaller number of land-cover types,

which is done as weighted averages for each pixel.

Per se, this may not provide additional information;

however, EFTs include in their definition a represen-

tation of vegetation status by means of the primary

production, annual amplitude, and phenology of the

NDVI annual cycle at pixel level, ecologically mean-

ingful information that otherwise would not be taken

into account.

FIG. 8. Vegetation property differences between EFTs of 2008

and the USGS classification: (a) minimum and (b) maximum

background albedo through the year and (c)maximumbackground

emissivity through the year.
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The definition of EFTs captures the differences in

ecosystem functioning within the same land-cover type.

For instance, it distinguishes dense from open shrub

lands or irrigated from rain-fed croplands by means of

their differences in primary production dynamics. With

these definitions, yearly changes in EFTs (either land-

cover changes or interannual variability of environ-

mental factors) will have associated a consistent set

of yearly biophysical properties (e.g., a dry year with

stressed vegetation will have increased stomatal re-

sistance, higher albedo, and lower surface roughness and

the opposite during a wet year).

Summarizing the key aspects of the EFTs classifica-

tion, it is noted that (i) it is an alternative approach to

land-cover classification that centers on physical prop-

erties that allow one to identify patches of land that

behave homogeneously in terms of surface–atmosphere

energy and biomass exchanges (for a same EFT value)

(from a climate modeling point of view, this is unique);

(ii) it is based in concepts of ecosystems functions, en-

ergy and carbon exchanges; (iii) it can be applied to

cases preceding the MODIS period (using AVHRR

NDVI); and (iv) it provides consistency among changes

in all 15 biophysical parameters.

5. Effects of land surface changes on regional
climate

The sensitivity of the model to the lower boundary

conditions was tested for the period that included the

2008 severe drought. Long-term simulations with the

WRF–Noah model were performed using the land-

cover representation based on EFTs properties de-

scribed in section 4, and the results were compared with

the control simulations. The model configuration for the

EFT ensemble simulations was identical to that of the

CTL ensemble, except for the change in the land-cover

dataset. An analysis is done of the changes in precipi-

tation and 2-m temperature changes when EFTs are

used as lower boundary conditions. The interpretation

of these changes focuses on the modification of vegeta-

tion properties and concurrent land surface processes.

Nevertheless, a specific interpretation for the precipi-

tation and 2-m temperature changes is not always ap-

parent owing to the complexity of the system, including

the type of land cover (or EFT) that prevails in each

region and the dominant precipitation/circulation re-

gimes to which each region is subject. Further, while the

Noah LSM follows a single column approach, its use

over a grid and coupled with WRF implies that non-

linear three-dimensional effects will take place. Land-

cover changes will favor the generation of surface

gradients for different variables, which in turn will

FIG. 9. Mean precipitation during the drought period: (a) CTL

ensemble, (b) EFT ensemble, and (c) their differences. In (c), the

three regions identified are selected for further analysis: A repre-

sents the drought region, B represents the northernmost part of the

drought area, and C is the region with large positive biases of

precipitation. Ocean areas were masked out.
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induce local circulations and differential surface heat

fluxes. Advective processes will be influenced, as will

be the moisture flux convergence (e.g., Baidya Roy and

Avissar 2002; Lee and Berbery 2012).

a. Land surface effects on precipitation

Figure 9 compares the model rainfall biases for the

CTL and EFT ensembles during the drought period.

As discussed in section 3b, the CTL simulations un-

derestimate rain in the main drought area (Fig. 9a) and

overestimate precipitation in the northern part of the

domain, over the Andes cordillera, the Brazilian high-

lands, and Paraguay. The rainfall bias of the EFT en-

semble (Fig. 9b) resembles that of the CTL ensemble in

terms of both pattern and magnitude. Nevertheless, the

difference map (Fig. 9c) shows that the EFT ensemble

reduces the biases in several regions. To the south of the

domain, positive values (green shades) mean that the

EFT ensemble produced slightly more rain in an area

where the CTL had a dry bias. Over Bolivia, Paraguay,

and southern Brazil, Fig. 9c presents negative values

(brown shades), meaning that the EFT ensemble re-

duces the wet bias of the CTL ensemble. Thus, the EFTs

bring the model representation of the precipitation

pattern closer to the observations in regions with either

wet or dry biases.

Three regions were selected to examine the time evo-

lution of area-averaged model, satellite, and observed

precipitation estimates (Fig. 10). The shading between

the satellite and observed precipitation is an indicator

of the uncertainty in the observations, and mean biases

are presented in Table 1. Region A covers the drought

core where the CTL ensemble simulations exaggerate

its severity (Fig. 4c). The EFT ensemble simulation

increases the magnitude of the precipitation (Fig. 10a),

reducing the dry bias by about 8.5% during the summer

(Table 1) and offering a somewhat better representa-

tion of the drought event. Region B corresponds to

FIG. 10. Land-only area-averaged precipitation for TRMM and observations (OBS) (their differences are shaded)

CTL and EFT ensembles over (a) region A, (b) region B, and (c) region C.
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the northern sector of the observed drought, where the

model had failed to replicate the dry conditions. The

EFT ensemble precipitation (Fig. 10b) remains at all

times closer to the observations than the CTL ensem-

ble, indicating again an improvement on the simula-

tion. Here, the wet bias was reduced by 8% for the

whole period and by 11.3% during summer. Notably,

despite differences in magnitude and the absence of

a well-established annual cycle, the model simulations

reproduce the month-to-month variability. Finally,

region C covers northern Paraguay/southern Bolivia

where the CTL ensemble exhibits a large wet bias. The

observed rainfall (Fig. 10c) has a defined annual cycle

with a maximum during austral summer and a mini-

mum during winter. The evolution is correctly repre-

sented in the two ensemble simulations, but with

excessive magnitude during summer, sometimes more

than doubling the observed values (e.g., December

2008). However, the EFT ensemble simulation reduces

the wet bias by 18.3% for the whole period and 21.6%

for the rainy season (Table 1).

The EFT ensemble vegetation for region A seems to

be more representative of the drought period than the

CTL ensemble, as it exhibits a lower vegetation green-

ness fraction and leaf area index, as well as higher sto-

matal resistance (Table 2). On the other hand, the

EFT ensemble has a precipitation increase over region

A that cancels out the dry bias noted in the CTL en-

semble. The increased precipitation leads to soil mois-

ture increases, favoring a larger latent heat flux and

a sensible heat flux reduction (Fig. 11). While the two

findings (bias reduction and more realistic vegetation

representation) are encouraging when considered in-

dependently, together they seem counterintuitive. A

plausible justification can be found in Lee and Berbery

(2012) who examined the effects of land-cover changes

in the La Plata basin, where region A is located. Their

results indicate that land-cover changes also induce

changes in lower-level moisture fluxes and their con-

vergence. In the case of the current study, land-cover

changes from the CTL to the EFT ensembles induce

an increase of about 25% of the vertically integrated

moisture flux convergence (not shown) that helps ex-

plain the increase of precipitation as a larger-scale effect

of land-cover changes as opposed to a local effect alone.

The reduction of precipitation (P) to the north of the

domain (brown shades over regions B and C in Fig. 9c)

is associated in general terms with a reduction of all

components of the surface water balance: soil mois-

ture (SM), evapotranspiration (EVT), runoff, and pre-

cipitation (see Table 3). Table 2 shows 10 out of the

15 biophysical properties for the three regions. The five

terms excluded either did not give perceptible in-

formation for the region (e.g., related to snow processes

or radiation stress) or were mostly constant (e.g., rooting

depth). According to Table 2, the EFTs properties in

region B are more representative of drier conditions

than those obtained from USGS, with a reduction of the

green vegetation fraction and the leaf area index and in-

creasing stomatal resistance. The large negative differ-

ence in surface roughness is likely attributable to the

replacement of subtropical humid forests by crops in

TABLE 1. Bias reduction in precipitation from theCTL ensemble to

the EFT ensemble for the three regions defined in Fig. 9c.

Region Drought period Summer (Dec–Feb)

A 3.90% 8.46%

B 7.98% 11.29%

C 18.30% 21.62%

TABLE 2. Area-averaged values of vegetation properties for the three selected regions (A, B, and C) derived from theUSGS land-cover

dataset and the EFT datasets. Their percent differences are computed as [(EFTs 2 USGS)/USGS] 3 100. The properties are green

vegetation fraction (fraction 0.0–1.0), stomatal resistance (sm21), minimum and maximum leaf area index through the year (di-

mensionless), minimum andmaximum roughness length through the year (m), minimum andmaximum albedo through the year (fraction

0.0–1.0), and minimum and maximum emissivity through the year (fraction 0.0–1.0).

A B C

USGS EFTs Diff (%) USGS EFTs Diff (%) USGS EFTs Diff (%)

GVF 0.73 0.64 212.3 0.77 0.73 25.2 0.62 0.68 9.7

Stomatal resistance 94.57 128.01 35.4 103.21 115.94 12.3 90.66 122.87 35.5

LAI min 1.24 0.97 221.8 1.98 1.53 222.7 1.00 1.20 20.0

LAI max 4.03 3.50 213.2 4.97 4.42 211.1 3.99 3.99 0.0

Z0min 0.09 0.12 33.3 0.31 0.21 232.3 0.19 0.16 215.8

Z0 max 0.14 0.16 14.3 0.31 0.24 222.6 0.19 0.19 0.0

Albedo min 0.18 0.19 5.6 0.16 0.18 12.5 0.19 0.19 0.0

Albedo max 0.22 0.22 0.0 0.17 0.20 17.6 0.20 0.22 10.0

Emissivity min 0.93 0.93 0.0 0.94 0.93 21.1 0.93 0.93 0.0

Emissivity max 0.97 0.95 22.1 0.95 0.95 0.0 0.94 0.95 1.1
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recent decades (Izquierdo et al. 2008). These conditions

increase the surface resistance to evaporation, giving

place to a positive feedback with weaker turbulent ex-

changes, lower precipitation, soil wetness, and runoff

(Fig. 11 and Table 3). Note that the mean values of soil

moisture in the CTL and EFT ensembles are similar

(Table 3). Analysis of the spatial patterns (Fig. 11a) in-

dicates that this is attributable to the large positive dif-

ferences of soil moisture around the southwestern sector

of region B. However, over most of the area where the

precipitation bias reductionwas achieved, the use of EFTs

leads to a general reduction of soil moisture.

The reduction of evapotranspiration in region C

(Table 3 and Fig. 11c) can be traced to the increased

stomatal resistance and the smaller roughness length

(Table 2), consistent with a reduction of the turbulence

in the boundary layer and an increase of the lower at-

mosphere stability. Also, the decrease in the total heat

flux (Figs. 11b,c) reduces the moist static energy at the

boundary layer (Eltahir 1998) and favors lower rainfall,

as shown in Fig. 9c. As a result of these changes, pre-

cipitation, soil moisture, and runoff are also reduced

(Table 3).

In summary, the results show that areas where soil

moisture is reduced are associated with evapotranspi-

ration reductions, sensible heat flux increases, and lower

precipitation and runoff. Conversely, regions where the

soil moisture has increased are associated with sensible

heat flux reductions and latent heat flux increases that

favor a moister boundary layer and increased rainfall

and runoff. Correlations among soil moisture, heat fluxes,

and precipitation presented in Table 4 support these

general conclusions. Soil moisture is positively (nega-

tively) correlated with latent heat flux (sensible heat

flux). In turn, the correlation between latent heat (sensi-

ble heat) and precipitation is also positive (negative).

These results agree in general terms with the theory of

Eltahir (1998) who proposes a pathway for relating the

positive feedback between soil moisture conditions and

rainfall. As discussed, deviations from this behavior are

found when regional circulations develop also as a result

of land-cover changes.

b. Land surface effects on 2-m temperature

The 2-m temperature bias of the CTL ensemble sim-

ulation was discussed in section 3b and depicts a large-

scale pattern of negative values (cold bias) toward the

east coast over Uruguay and southern Brazil and posi-

tive values (warm bias) over the central continental re-

gion east of the Andes (Fig. 12a). Figure 12b presents

the differences between the CTL and EFT biases,

showing a general increase of 2-m temperature. To

further the analysis of the biases, two key regions,

FIG. 11. Mean values during the drought period of (a) soil

moisture for the top two layers (40-cm depth), (b) sensible heat flux

(SHF), and (c) latent heat flux (LHF). (The positive soil moisture

differences over region A correspond to the reduction of the dry

bias. See text for details.)
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identified as central and eastern in Fig. 13, were exam-

ined. Table 5 presents the values of the biophysical

properties for USGS and EFTs and their differences,

while Table 6 shows the values of surface variables re-

lated to the energy balance from the corresponding

ensembles (CTL and EFT). According to Fig. 13a, the

cold biases in the CTL simulation are present during all

months but with somewhat larger values during the

warm season. The EFT simulation exhibits a larger

amplitude of the temperature annual cycle and, while

maintaining a negative bias during the cold season, it

eliminates the negative bias in summer (in fact, it

overcorrects, showing a slightly positive bias). Overall,

the cold bias in the CTL ensemble in the eastern sector

averages 21.38C, but it is notably reduced in the EFT

ensemble to 0.28C with a reversal of its sign (Fig. 13a).

Contrary to whatmight be expected in the central region

(Fig. 13b) the overall EFT ensemble 2-m temperature

bias is larger than the CTL ensemble bias (1.48 versus
0.58C). The EFT simulation reduces the positive bias

during the winter months, but increases them during the

warm season.

The general warming over much of the domain can be

attributed to the reduction of vegetation, as indicated

in the changes of green vegetation fraction and leaf area

index for the EFT ensemble (see Table 5 and Figs. 7a,b).

This argument is consistent with other studies investi-

gating the relations between vegetation and surface tem-

perature (see, e.g., Kaufmann et al. 2003; Seneviratne

et al. 2010; Avila et al. 2012). The changes in vegetation

can be attributed to the drought conditions, although the

replacement in recent years of natural forest by sowing

and crops to the north of the region (Izquierdo et al.

2008), which are not represented in the CTL land cover,

may have contributed as well. Despite the consistent

result for vegetation changes and temperature changes,

the analysis of the energy balance (Table 6) is un-

certain. Most of the changes in the energy budget terms

are small and do not appear to have physical consis-

tency. Obviously, the 2-m temperature does not match

uniquely the energy balance (surface temperature does);

however, at this stage and without analysis beyond the

scope of our study, it is unclear whether those incon-

sistencies are due to differences of behavior between

the 2-m temperature and the surface temperature,

changes on circulations patterns that introduce large

nonlinearities, or simply the surface energy term vari-

ations are at a noise level.

6. Discussion: Evolution of the drought

So far the analysis focused on the differences between

the CTL and EFT ensembles. Here the drought period

will be examined against a mean climatology, where

anomalies are computed as the differences between the

results of the EFT ensemble and mean values of a 10-yr

model climatology (2001–10). (The climatology itself

will not be discussed in this article.) Figure 14 presents

the evolution of the anomalies of rain, soil moisture,

latent and sensible heat flux, and temperature averaged

for the main drought area (corresponding to 388–288S,
638–558W). The evolution of the simulated precipitation

anomalies (Fig. 14a) is remarkably similar to the satel-

lite and observed precipitation anomalies shown in Figs.

2a,b, with an almost continuous deficit of rain from

November 2007 to June 2009 and the largest drynesses

in November 2007, April and December 2008, and

March 2009.

The soil moisture anomalies (Fig. 14b) have a delayed

response to the precipitation anomalies and show dry

conditions beginning in March 2008 and continuing

until July 2009, with only February 2009 having a slightly

positive anomaly. During June–October 2008, precipita-

tion was closer to normal values, which allowed the soil

TABLE 3. Area averages (regions A–C) of selected variables from the CTL and EFT ensembles and their differences computed as

[(EFT2 CTL)/CTL]3 100. The variables are precipitation (mmday21), soil moisture (mm), evapotranspiration (mmday21), and runoff

(mmday21). Only data over land were considered.

A B C

CTL EFT Diff (%) CTL EFT Diff (%) CTL EFT Diff (%)

P 1.85 2.05 10.8 6.44 6.03 26.4 5.45 4.97 28.8

SM 86.44 97.74 13.1 136.79 136.90 0.1 113.58 111.83 21.5

EVT 1.58 1.66 5.1 3.32 3.18 24.2 2.88 2.73 25.2

Runoff 0.19 0.24 26.3 2.76 2.48 210.1 2.14 1.82 215.0

TABLE 4. Correlation coefficients between ensemble changes

(EFT 2 CTL) of soil moisture, heat fluxes, and precipitation.

Region

A B C

SM 2 LHF 0.83 0.62 0.84

SM 2 SHF 20.67 20.78 20.91

LHF 2 P 0.67 0.06 0.71

SHF 2 P 20.24 20.60 20.74
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moisture to recover partially and reduce the anomalies

during the austral 2008/09 summer. This feature is not

found in the CPC soil moisture estimates (Fig. 2c), al-

though the overall evolution is consistent with them.

The negative anomalies of the latent heat flux for the

whole period (Fig. 14c) indicate a continuous deficit of

evapotranspiration, which can be associated with the

increased vegetation stress owing to the lack of water.

The evolution of the sensible heat flux (Fig. 14d) closely

follows the climatology with alternating periods of

small negative and positive values. Note the negative

relation between sensible and latent heat fluxes, with

sensible heat flux being positive at the time of largest

negative latent heat flux anomalies. The temperature

time series shows that the drought region was about

28–38C warmer than normal, except during winter.

In summary, the dry soil conditions and lower nor-

malized difference vegetation index reported in section 4

during the drought modified the spatial distribution of

some properties like green vegetation fraction, albedo,

FIG. 12. Mean 2-m temperature during the drought period: (a) CTL ensemble bias and (b) differences between the EFT and CTL

ensembles. Areas above 800 hPa and ocean areas were masked out.

FIG. 13. Area-averaged 2-m temperature for CPC and OBS (their slight differences are shaded) CTL and EFT over

two regions denoted to the left: (a) eastern region and (b) central region. Only data over land were considered.
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surface roughness length, and stomatal resistance.When

rain is strongly reduced with respect to the climatolog-

ical values, temperatures are larger than normal, latent

heat flux decreases, and sensible heat flux increases. The

soil moisture is also reduced, with a delay due to mem-

ory processes. Low evapotranspiration leads to de-

ficient atmospheric moisture, increasing the stability of

the lower atmosphere and intensifying the downward

trend of rainfall.

7. Conclusions

Recent efforts have produced a number of high-

quality remotely sensed land-cover maps that can be

used to better represent the land surface states and the

land–atmosphere interactions, improving the perfor-

mance of climate models. Our work contributes to this

line of research by presenting a new approach to de-

scribe vegetation in regional models with information

obtained from satellite-based estimates of ecosystem

functional properties. New time-varying maps of the

land surface biophysical properties were created using

ecosystem functional types, which capture the changes

of vegetation status owing to anomalous climate condi-

tions as well as changes due to land-use practices. This

approach ensures the use of a consistent set of bio-

physical vegetation properties that reflect actual land

surface conditions in long-term simulations with WRF.

The method should be most helpful when actual con-

ditions depart from mean values as it happens during

extreme events. To confirm this hypothesis, this study

focused on land surface processes during the 2008 severe

drought in southern South America while also examin-

ing other regions where model biases were large.

Simulations using the standard surface conditions

(USGS land-cover map) represent the spatial pattern of

precipitation but tend to exaggerate the drought se-

verity while producing large excesses of precipitation

in other regions. The temperature is reasonably well

simulated in magnitude and distribution, except for

cold biases toward the eastern coast and large biases

over the Andes cordillera and its eastern slopes. Veg-

etation changes due to the drought or to land-use

changes modify the spatial distribution of the surface

biophysical properties. The use of the new dataset of

EFT-based vegetation properties as a replacement of

the conventional land-cover types in the WRF–Noah

model offers evidence that time-varying land-cover

properties do impact the performance of coupled land–

atmosphere models. Particularly, the use of the novel

EFT dataset leads to an improvement of the drought

simulation and reduces the wet biases in most (but not

all) regions of large precipitation. The results show that

the model is sensitive to land-cover changes and vegeta-

tion variability through land–atmosphere interactions.

Precipitation estimates showed improvements in most

regions, but mixed results were obtained for the tem-

perature bias: The use of EFTs produced a significant

reduction of the negative anomalies of temperature

(cold bias) toward the eastern part of the domain over

land. On the other hand, the near-surface temperature

simulation was degraded over the central region where

the warm bias was increased by about 18C. The reasons
for this inconsistency are not yet understood and may

be inherent to parameterizations that tend to tune terms

for better results. While beyond the scope of this work,

further examination will require to combine the study of

surface states with corresponding changes in parameteri-

zations. Advective processes have not been discussed in

this article, but there are indications that they may play an

additional role in defining temperature in this region.

The EFTs approach allows a suitable characteriza-

tion of the actual surface conditions (the state of the

vegetation), which is the bottom boundary condition for

model simulations (e.g., WRF–Noah, as applied to this

study). With near-real-time availability of EFT datasets,

the methodmay have implications for numerical weather

TABLE 5. As in Table 2, but for the eastern and central regions.

Eastern Central

USGS EFTs % diff USGS EFTs % diff

GVF 0.37 0.35 25.4 0.70 0.67 24.3

Stomatal

resistance

92.95 106.77 14.9 61.99 116.99 88.7

LAI min 0.90 0.74 217.8 1.17 1.09 26.8

LAI max 2.18 2.14 21.8 4.09 3.79 27.3

Z0min 0.12 0.10 216.7 0.13 0.14 7.7

Z0 max 0.12 0.12 0.0 0.16 0.18 12.5

Albedo min 0.12 0.13 8.3 0.18 0.19 5.6

Albedo max 0.13 0.14 7.7 0.21 0.22 4.7

Emissivity min 0.96 0.96 0.0 0.92 0.93 1.1

Emissivity max 0.97 0.96 21.0 0.96 0.95 21.0

TABLE 6. Area averages for the central and eastern regions of

selected variables from the CTL and EFT ensembles and their

differences computed as [(EFT2CTL)/CTL]3 100. The variables

are temperature (8C), net radiation (Wm22), sensible heat flux

(Wm22), and latent heat flux (Wm22). Only data over land were

considered.

Eastern Central

CTL EFT % diff CTL EFT % diff

T 19.49 20.85 7.0 20.88 21.74 4.1

NR 128.13 126.46 21.3 120.58 117.80 22.3

SHF 37.94 38.76 2.2 55.04 54.03 21.8

LHF 85.64 86.58 1.1 62.54 61.96 20.9
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prediction as well so that this approach could be used for

both weather and climate models.

NCEP operations currently use fixed land-cover types

and an older 5-yr climatology of green vegetation fraction

(GVF), which is derived from NDVI data. NCEP is ex-

ploring the use of a near-real-time GVF product and the

use of the future Noah LSM with multiparameterization

options (Noah-MP), which has CO2-based photosynthe-

sis, an explicit canopy, and dynamic (growing) vegetation,

among other upgrades (Niu et al. 2011). A desired next

step will be to combine the methodology presented here

with the future Noah-MP. One additional consideration

is that, for operational numerical weather prediction and

seasonal climate forecasting, EFTs need to smoothly vary

FIG. 14. Land-only area-averaged anomalies for the main drought area of (a) precipitation,

(b) soil moisture, (c) latent and (d) sensible heat fluxes, (e) temperature at 2m, and (f) runoff.

The anomalies were computed as the difference between the variables of the EFT ensemble

and climatology variables from a 10-yr simulation (2001–10).
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from season to season or year to year, similar to the near-

real-time GVF derived from weekly observed NDVI

that NCEP plans to use. In that case, it will be necessary

to explore how the near-real-time GVF maps can be

best combined with the 64 EFT categories.

Acknowledgments. We thank Drs. Alan K. Betts and

Zavisa Janji�c for their comments on the BMJ scheme.

We also acknowledge the anonymous reviewers for their

questions that helped clarify many aspects of the discus-

sion. This research was supported by NASA Grant

NNX08AE50G and two grants (CRN2094 and CRN3095)

from the Inter-American Institute for Global Change Re-

search (IAI), which is supported by the U.S. National Sci-

ence Foundation (Grant GEO-1128040). The authors also

acknowledge the support providedby theAgenciaNacional

de Promoción Científica y Tecnológica through PICT
2008-1576, and the Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), both fromArgentina.

APPENDIX

Computation of the EFT Biophysical Properties

Once the EFT categories are defined (section 4), the

computation of their corresponding biophysical prop-

erties is done following these steps.

1) Each 0.058 MODIS pixel in the MCD12C1 product

comes with the percentage coverage of IGBP land-

cover classes for each year.

FIG. A1. Scatterplots of MODIS albedo (product MCD43C3) vs albedo derived from IGBP land-cover categories

(blue); vs albedo derived from MODIS land-cover product MCD12C1 (black); and vs albedo derived from EFT

categories (red). [Blue and black circles overlap in (c).] The corresponding IGBP land-cover categories for the

selected points are (a) croplands (348S, 578W); (b) croplands (388S, 618W); (c) grasslands (328S, 558W); and

(d) savanna (168S, 588W).
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2) The MODIS land-cover classes were then used to

specify 15 land surface parameters (as defined by

a table in the Noah LSM: land-cover class / values

for 15 parameters) for each pixel and each year.

These parameters are fixed for each land-cover class.

For each 0.058 MODIS pixel, we calculated a 15-

parameter weighted average value (one for each land

surface parameter) based on the percentage cover-

age of each IGBP class.

3) Each MODIS pixel was also assigned a particular

EFT category (from 1 to 64) for each year. The 64

annual EFT categories were computed from the

monthly NDVI values of the MOD13C12 product

(Alcaraz-Segura et al. 2013b).

4) The annual EFT maps were then overlaid on top of

each of the 15 land surface parameter maps of the

corresponding year (from step 2). Then, for each

EFT category, a spatially averaged parameter value

was computed. This means that we have now for each

year a table with a set of 15 biophysical parameters

per EFT category.

5) Finally, the 2001–09 time mean of each land surface

parameter was computed for each EFT category.

With this step we get a unique relation between EFT

categories and their biophysical parameters that

allows us to prepare a unique table similar to the

one used in Noah LSM (EFT category / values for

15 parameters).

To test the performance of the approach, minimum

and maximum albedo scatterplots from different sources

were contrasted for four different locations. Following

the IGBP classification, the locations are identified as

croplands (two areas), grasslands, and savanna. The

albedo estimates are as follows: (i) MODIS albedo

product MCD43C3, shortwave, used as reference;

(ii) IGBP land cover (LC)-derived albedo using the

corresponding conversion table provided by the Noah

LSM; (iii) MODIS LC-derived albedo computed as for

IGBP LC but using the MODIS land-cover types, prod-

uct MCD12C1; and (iv) EFTs albedo (derived in this

study). MODIS albedo is calculated from narrowband

information and provided for different broadband re-

gions of the spectrum (visible, near-infrared, short-

wave, etc.) [see discussion in Houldcroft et al. (2009)].

Consequently, those albedos are not identical to the

broadband albedo used by the Noah LSM (based on

AVHRR), implying that the comparison is not straight,

but still informative. [A method to convert MODIS al-

bedo for use with the Noah LSM is discussed in Liang

et al. (2005).]

Figure A1 presents the scatterplots at the four loca-

tions, where it can be noted that the EFT albedo

estimates (red circles) do not match theMODIS albedo,

but they are closer to it than are the IGBP LC or

MODIS LC albedo estimates (blue and black circles

respectively). That is, they tend to have a better corre-

spondence with observations than the other estimates.

Time series for the whole period (not shown) confirm

this assessment. The examples presented here are for

selected locations, but no particular effort was done to

choose them. They indicate that EFTs are a helpful

approach to represent the geographical and temporal

changes in the land surface biophysical properties.

Part of the reason for the improvement may be at-

tributed to the fact that the conventional land-cover

representation prescribes properties for each land cover

regardless of whether it is a wet or dry year. The EFT

approach is based on satellite-estimated exchanges of

mass and energy between land and atmosphere regard-

less of the land-cover type, and therefore the biophysical

properties will be sensitive to changes due to a wetter or

drier year, even when land-cover categories are assumed

to be the same.
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